您所在的位置:首页 > 看点 - 正文看点

史上最难六年级附加题(6年级数学公式(下册)有哪些)

2024-09-08 10:13:47 【看点】 5人已围观

摘要        这篇文章给大家聊聊关于史上最难六年级附加题,以及6年级数学公式(下册)有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。本文目录6年级数学公式(下册)有哪些六年级下册试用本数学概念急!!!六年级数学下册复习资料一、6年级数学

史上最难六年级附加题(6年级数学公式(下册)有哪些)

这篇文章给大家聊聊关于史上最难六年级附加题,以及6年级数学公式(下册)有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

本文目录

  1. 6年级数学公式(下册)有哪些
  2. 六年级下册试用本数学概念 急!!!
  3. 六年级数学下册复习资料

一、6年级数学公式(下册)有哪些

1、正方形(C:周长,S:面积, a:边长)

S表=a×a×6体积=棱长×棱长×棱长

3、长方形(C:周长,S:面积, a:边长, b:宽)

4、长方体(V:体积, S:面积, a:长, b:宽, h:高)

表面积=(长×宽+长×高+宽×高)×2

5、三角形(S:面积,a:底, h:高)

6、平行四边形(S:面积,a:底, h:高)

7、梯形(S:面积,a:上底, b:下底, h:高)

8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)

9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)

侧面积=底面周长×高=Ch=πdh=2πrh

10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)

二、六年级下册试用本数学概念 急!!!

《全日制义务教育数学课程标准》(实验稿)中较大幅度地增加了“统计与概率”的内容。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。因此小学数学加入这部分内容是完全必要的,本文将探讨的问题是小学教师应明确哪些基本概念,使教学既具有科学性同时又符合学生的认知特点;如何使学生在形成和解决现实世界问题的过程中,发展统计意识、发展用统计的方法解释数据、表达及交流信息的能力,以及用多种方式来收集、整理和展示他们的思考的能力;统计与概率与小学其它部分的内容是如何联系的。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的:左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;

某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?

因为前30年出现晴天的频率为0.83,所以概率大约是0.83。

对某一类特殊的试验,还可以从另一个角度求它的概率。抛掷一枚硬币时,试验的结果有2种:出现正面、出现反面;由于硬币是均匀的,通过直观分析可以看出出现正面和反面的可能性相同,都是。进一步研究:

(2)每个结果出现的可能性是相同的(硬币、骰子是均匀的,抛掷时出现每一面的可能性都相同)

假如事件A是由上述n个结果中的m个组成,则称事件A发生的概率为m/n。

例:掷一颗均匀的骰子,求出现2点的概率。

由于这个试验满足概率的古典定义的两个条件,且n=6,m=1,∴出现2点的概率是。

又:求出现偶数点的概率?出现偶数点这一事件包含3个结果,2点、 4点、6点。m=3

概率的古典定义不用大量地去试验,只要试验的结果为等可能的有限个的情况,通过分析找出m、n,其概率就可以求出了,其优点是便于计算,但概率的古典定义不如概率的统计定义适用面广,如抛掷一个酒瓶盖子时,就不满足出现每一面的可能性都相同的条件,因此出现正面的概率就不能用概率的古典定义去求,而要用统计定义去近似地求它的概率。

在小学数学的教学中,根据小学生的认知水平,应避免学习过多或艰深的术语,从小学低年级开始应该非形式地介绍概率思想,而非严格的定义、单纯的计算,因此,在小学经常用“可能性”来代替“概率”这个概念。但作为教师应该懂得它的意义,否则就会出笑话。有的教师让学生在课上做 20次抛掷硬币的试验,希望学生能得到出现正面的可能性是,因为抛掷的次数少,所以要得出10次正面,是很难做到的,概率的统计定义一般得出的是概率的近似值。

二、在学习统计与概率的过程中发展学生的能力

统计的内容是用数字描述和解释我们周围的世界,应结合学生生活的实际,如:可以设计成一个活动,使学生主动地投入其中;提出关键的问题;搜集和整理数据;应用图表来表示数据;分析数据;作出推测,并用一种别人信服的方式交流信息。同时体会对数据的收集、处理会获得某些新的信息。

例如:组织一次班会活动,目的是增进同学之间的互相了解和交流。首先让学生们自己选题,希望了解哪些信息:“同学们每天怎么来上学?”;“每个月都有多少同学过生日?”;“同学们喜欢读哪类图书?”;“同学们的爱好是什么?”;“我们最喜爱的运动”;“我们最喜爱的动物”…然后学生们分组去调查收集数据,用表格归纳整理,并且制成各种统计图:如:

从统计图可以知道,喜欢动物故事的同学最多,根据这个统计结果,班里可以组织一个动物研究会,办一个动物图片展览,到野生动物园去参观等。全班同学还可以把各种图表制成墙报、手抄报把自己的班级介绍给全校其他同学等。

三、统计、概率与小学其它内容的联系

上面各图中表示黑色区域的分数分别为;;;,小学生即使没有学习几何图形的概念也可以通过分数的意义知道2号黑色区域最容易投中,因为根据分数的意义它占总面积的比最大,为。

从红球所占的比例来看,1号袋为; 2号袋为;3号袋为击,因此相比之下,1号袋最容易抽出红球。

例3下面是用扇形统计图统计的资料

对小学生来讲,扇形统计图的难点在于不同的圆心角所代表的部分的百分数表示及百分数表示的圆心角的度数,而对于—上面图中有特殊圆心角时,可避开圆心角,用分数、百分数的意义得出喜欢英语课的,科学课的,数学课的;参加球类兴趣小组的有50%;参加乐队的18%。

从上面的例子可以看出,统计与概率可以为发展和运用比、分数、百分数和小数这些概念提供背景。因此我们可以用建构的方式,建立这部分内容与小学其它知识的联系和建构有意义的认知结构,从而更深入、更灵活地学习。

总之,在小学,统计与概率的教学既要具有科学性又要符合小学生的认知特点,同时,它还是解决问题的有力工具,它也是架起与其它内容之间的桥梁。

已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?

已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:

例:有两堆煤,第二堆比第一堆多40吨,假如从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?

分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:

10+40=50(吨)→第二堆煤的重量

答:第一堆煤有10吨,第二堆煤有50吨。

已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?

分析:假如第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。

题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)

100-12=88(张)→20分一张的张数

或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

每份数=(余数+不足数)÷两次每份数的差

总份数=(较大余数-较小数)÷两次每份数的差

总份数=(较大不足数-较小不足数)÷两次每份数的差

例1、解放军某部的一个班,参加植树造林活动。假设每人栽5棵树苗,还剩下14棵树苗;假设每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?

分析:由条件可知,这道题属第一种情况。

答:这个班有9人,一共有树苗59棵。

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

答:王刚的父亲今年75岁,母亲今年73岁。

已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

Gb(e(o/X3QE&dL$Z0凤凰博客h7IM?pJ'u7NV

若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。假设青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

=100(头)→草地上原有的草可供100头牛吃一天

答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

(100×4-50×6)÷(100-50)

答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。

例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。假如把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?

其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。

(250÷25)×(175÷25)×(75÷25)

答:正方体的棱长是25厘米,共锯了210块。

例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?

分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。

答:每个齿轮分别要转5周、3周。

指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。

1.求一个数是另一个数的几分之几。

3.已知一个数的几分之几是多少,求这个数。

其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?

例2:一堆煤有180吨,运走了。走了多少吨?

例3:某农机厂去年生产农机1800台,今年计划比去年增加。今年计划生产多少台?

例4:修一条长2400米的公路,第一天修完全长的,第二天修完余下的。还剩下多少米?

例5:一个学校有三好学生168人,占全校学生人数的。全校有学生多少人?

例6:甲库存粮120吨,比乙库的存粮少。乙库存粮多少吨?

例7:一堆煤,第一次运走全部的,第二次运走全部的,第二次比第一次少运8吨。这堆煤原有多少吨?

它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:

凤凰博客q!q1Nc3E-n`a9[Q$M

例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。假设两队合作8天后,余下的工程由甲队单独做,还要几天完成?

例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?

"[6Xr3MHv)I0 1÷(+-)凤凰博客I@?b&W+CD

凤凰博客o Sj4ON:}2\/a+N

这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。

例1.某农科所进行发芽试验,种下250粒种子。发芽的有230粒。求发芽率。

1、长方形的周长=(长+宽)×2 C=(a+b)×2

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr

10、圆的面积=圆周率×半径×半径Ѕ=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2

12、长方体的体积=长×宽×高 V=abh

13、正方体的表面积=棱长×棱长×6 S=6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a

15、圆柱的侧面积=底面圆的周长×高 S=ch

16、圆柱的表面积=上下底面面积+侧面积

S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch

17、圆柱的体积=底面积×高 V=Sh

V=πr h=π(d÷2) h=π(C÷2÷π) h

V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

19、长方体(正方体、圆柱体)的体

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

1、正方形 C周长 S面积 a边长周长=边长×4 C=4a面积=边长×边长 S=a×a

2、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a

(1)表面积(长×宽+长×高+宽×高)×2

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

v:体积 h:高 s;底面积 r:底面半径

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴假如在非封闭线路的两端都要植树,那么:

⑵假设在非封闭线路的一端要植树,另一端不要植树,那么:

⑶假如在非封闭线路的两端都不要植树,那么:

2封闭线路上的植树问题的数量关系如下

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

折扣=实际售价÷原售价×100%(折扣<1)

税后利息=本金×利率×时间×(1-20%)

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

1分=60秒 1时=3600秒积=底面积×高 V=Sh

参考资料:北京师范大学教育学院刘京莉

三、六年级数学下册复习资料

1、只有1条对称轴的图形是(等腰三角形、等腰梯形、半圆)

有3条对称轴的图形是(等边三角形)

有无数条对称轴的图形是(圆、圆环)

2、圆的对称轴的图形是(直径所在的直线)

4、圆是(平面图形、曲线、轴对称)图形。

二、在同圆或等圆里(必不可少的前提),直径是半径的2倍,半径是直径的一半。

三、在同圆或等圆里(必不可少的前提),直径都相等、半径都相等。

四、圆心确定圆的位置、半径确定圆的大小。圆规两脚之间的距离是圆的半径。

1、围成圆曲线的长度叫做圆的周长。

2、圆的周长除以直径的商,(周长和直径的比值),叫做圆周率,它是一个固定不变的数,和圆的大小无关。π>3.14。圆的周长大约是直径的3.14倍。

4、长方形的周长=(长+宽)×2=(a+b)×2

5、长度和周长单位有:km m dm cm mm

C半圆=d+πd÷2 C半圆=2r+πr

1、把圆平均分成若干份,可以拼成一个平行四边形或长方形。

S梯形=(上底+下底)×高÷2=(a+b)×h÷2

S圆环=S大圆-S小圆=π(R2-r2)

4、面积和表面积单位有:平方千米公顷平方米平方分米平方厘米

1平方千米=100公顷 1公顷=10000平方米

5、假设长方形的周长=正方形的周长=圆的周长,那么它们当中圆的面积最大。

八、半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍。

1、是、等于、相当于,意思相同。

1.二、求提高了、降低了、增加了、减少了、节约了、多了、少了百分之几,都是用:甲÷乙

2.三、小数、分数和百分数的互化

1.四、解答分数应用题的一般步骤

2.判断单位“1”是已知的还是未知的

3.假设单位“1”已知的,用乘法计算:单位“1”×对应分率

4.假设单位“1”未知的,用除法计算:已知量÷对应分率=单位“1”;另外,也可以用方程。

5、减数=被减数-差除数=被除数÷商

1、速度×时间=路程路程÷速度=时间路程÷时间=速度

2、单价×数量=总价总价÷单价=数量总价÷数量=单价

3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

4、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

图形变换和图案设计时,会用到:轴对称、平移和旋转。

2.平移:关注是上下平移还是左右平移,尤其是平移了多少格

3.旋转:关注是顺时针还是逆时针方向旋转,关注旋转的角度是多少度

a+b+c=a+(b+c) 25+37+63=25+(37+63)

a×b×c=a×c×b 25×9×4=25×4×9

a×b×c=(a×c)×b 128×3×8=(125×8)×3

两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,再把两个级相加。

a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25

a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)

1.两个数相除又叫做这两个数的比。其中,比号前面的数是比的前项,比号后面的数是比的后项,前项÷后项=比值

a÷b=a:b=(b≠0,除数、分母和后项不能为0)

例如:15÷25=():()==()%=()(填小数)=()折=()成

再如:甲数和乙数的比是4:3,甲数是乙数的(/),乙数是甲数的(/),甲数是乙数的()%,乙数是甲数的()%,甲数比乙数多()%,乙数比甲数少()%。

化简比就是把一个比化成最简单的整数比。也就是:前项和后项都是整数,并且前项和后项只能有公因数1。

4.注意:比值是一个数,而化简比结果是一个比。

例如::0.75化成最简单的整数比是(),比值是()。

重点关注:类似已知长方形的周长是28厘米,长和宽的比是4:3,求长方形的长、宽或面积。

6.三角形三个内角度数的比是1:2:3或1:1:2,这个三角形是(直角)三角形。

9.体积单位:立方米立方分米立方厘米

1升=1立方分米 1毫升=1立方厘米

11、大于0的数叫做正数,小于0的数叫做负数。正数和负数可以用来表示具有相反意义的量。0既不是正数也不是负数。

12、正数和负数可以抵消,比如:+5和-5能完全抵消;-8和+3抵消后得-5。

13、统计图有:(复式)条形统计图、(复式)折线统计图、扇形统计图。

14、条形统计图:很容易看出各种数量的多少。

15、折线统计图:不但可以看出数量的多少,而且能够表示数量的增减变化。

16、扇形统计图:能呈现各部分与总数的百分比。

(1)平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。

①直线、射线、线段的特点、联系与区别。

②角的特征、角的分类、角的度量方法。

④三角形的特征,分类(按边分、按角分)。

⑤四边形。每类图形的特征,特殊与一般的关系。

⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。

⑦轴对称图形。(能画出学过的轴对称图形的对称轴)

要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。

②能根据图形特征进行合理的判断、选择。

②掌握每种图形的周长与面积计算公式及推导过程。

①长方体、正方体、圆柱、圆锥的特征。

②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。

③建立这四种立体图形体积计算的联系。

④加强体积与表面积的区别、体积与容积的区别的对比训练。

建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。

如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案——

切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。

(1)平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。

(2)统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。

建议:复习时忌机械练习,单调地填表、制统计图,应结合学生的实际生活设计一些实践活动,在活动中,让学生应用统计知识,既达到了巩固知识的目的,又调动了学生的积极性,主动性,发挥了学生的实践能力与创新能力。

如:从学生的学习生活出发,针对商场购物优惠方式多种多样的特点,让学生自己设计购物方案,选择最佳购物方案,在这个过程中完成统计知识的复习任务。

必须要学好,初一上册、下册第一、二、七才能学好!

2010-03-20小学六年级数学总复习资料(一)的答案 514

2012-04-03数学,六年级总复习,资料 6

2009-03-29小学六年级数学总复习资料(三)【最大公约数与最小公倍数】 165

2010-12-11小学六年级数学总复习资料(九)〖量与计量〗 32

2012-01-12小学六年级数学复习资料 50

更多关于六年级下册数学复习资料的问题>>

网友都在找:六年级数学复习资料

有3条对称轴的图形是(等边三角形)

有无数条对称轴的图形是(圆、圆环)

2、圆的对称轴的图形是(直径所在的直线)

4、圆是(平面图形、曲线、轴对称)图形。

二、在同圆或等圆里(必不可少的前提),直径是半径的2倍,半径是直径的一半。

三、在同圆或等圆里(必不可少的前提),直径都相等、半径都相等。

四、圆心确定圆的位置、半径确定圆的大小。圆规两脚之间的距离是圆的半径。

1、围成圆曲线的长度叫做圆的周长。

2、圆的周长除以直径的商,(周长和直径的比值),叫做圆周率,它是一个固定不变的数,和圆的大小无关。π>3.14。圆的周长大约是直径的3.14倍。

4、长方形的周长=(长+宽)×2=(a+b)×2

2011-05-19 13:19可爱猫眼草|三级

六年级数学毕业考试试卷(2010、6)

一、仔细推敲,认真辨析。(对的在括号内打“√”,错的打“×”,共4分)

1、因为28= 4×7,所以4和7都是28的质因数。…………………()

2、长方体、正方体和圆柱的体积都可用V= Sh来计算。………………()

3、假如4a=3b,那么a:b= 4:3。……………………………………()

4、2008年的第一季度有91天。…………………………………………()

二、反复比较,慎重选择。(把正确答案的序号填在括号内,共6分)

1、在、、、、中,能化成有限小数的有()个。

2、下面图形中,对称轴最少的是()。

(1)正方形(2)长方形(3)等边三角形

3、观察下面算式,与49×26的积最接近的是()。

(1)50×30(2)50×20(3)50×26

4、已知一个三角形的两个角是锐角,这个三角形()。

(1)是锐角三角形(2)是直角三角形

(3)是钝角三角形(4)不能确定是什么三角形

5、用98粒种子做发芽试验,结果全部发芽,发芽率为()。

6、通过“整数和小数”的复习,你认为下列说法不正确的是()。

(1)比2小的自然数有1和0(2)4.895保留两位小数是4.90

(3)两个合数,一定不是互质数(4)☆÷△=9……6,△最小是7

三、仔细读题,认真填空。(共24分)

1、丹阳市二00五年工农业总产值总额是八十九亿七千零五十万元,这个数写作元,省略“亿”后面的尾数约是亿元。

2、3时15分=时 4.05公顷=公顷平方米

3、 6:()== 18÷ 30=()%=()成

4、的分数单位是,至少去掉个这样的单位正好是整数。

5、想一想,你做一次眼保健操大约分钟;估一估,将“1元”的硬币投掷若干次,“1元”字面朝上的次数约占()%。

6、一项工程,甲独做10天完成,乙独做12天完成,两队合做5天,可完成这项工程的。

7、6和是互质数,6和的最小公倍数是30。

8、:的比值是,写成最简单的整数比是。

9、华地百货某种空调原价2500元,现八折出售,现在每台只要元。

10、一个圆锥形沙堆,测得它的底面直径是4米,高1.5米。这个沙堆的体积是立方米。

11、下图是永久化肥厂2005年化肥产量统计图。看图填空:

(4)你还看出哪些信息?(至少写2条)

四、看清题目,细心计算。(共26分)

1、直接写出得数。(每题1分,共10分)

×14= 6.3÷0.9= 0.006×100= 2004—299=

306—(206+ 78)=(—)×12= 1.25×9×8=

2、求未知数x的值。(每题2分,共4分)

3、用递等式计算。(每题3分,共12分)

(1)8402+ 672÷28×17(2)18÷1.8—0.8×5

(3)÷[÷(1—)](4)[(—)÷ ]÷

1、在下面的长方形中画一个最大的圆,并求出它的面积。(单位:厘米)

2、下面是一个长方形。请你想象一下,以一条长边为轴旋转一周,可以形成一个。并计算出它的体积。(单位:厘米)

六、灵活运用,解决问题。(第1—4题每题5分,其余每题6分,共32分)

1、学校计划投资200万元建造活动大楼,实际投资180万元,实际投资节约了百分之几?

2、小明看一本210页的故事书,前8天平均每天看15页。剩下的在9天内看完,平均每天必须看多少页?

3、森林家具城里一种办公桌椅每套450元,椅子的价格是桌子的。办公桌子和办公椅子的价格各是多少元?

4、一列火车从甲地开往乙地,当行了全程的70%时,超过中点500千米。甲乙两地相距多少千米?

5、一个注满汽油的油桶,底面直径8分米,高15分米。做一个这样的油桶至少需要铁皮多少平方分米?假设每升汽油重0.75千克,这桶汽油重多少千克?

6、一个由3个大人和4个小孩组成的家庭准备到某地旅游。甲旅行社的收费标准是:假如买4张全票,则其余人按半价优惠。乙旅行社的收费标准是:家庭旅游算团体票,按原价的的优惠。这两家旅行社的旅游线路标准均为每人400元。你认为这个家庭应该选择哪家旅行社旅游比较合算?为什么?(计算后加以说明)

参考资料:这是2010年的卷子,好好复习

1、只有1条对称轴的图形是(等腰三角形、等腰梯形、半圆)

有3条对称轴的图形是(等边三角形)

有无数条对称轴的图形是(圆、圆环)

2、圆的对称轴的图形是(直径所在的直线)

4、圆是(平面图形、曲线、轴对称)图形。

二、在同圆或等圆里(必不可少的前提),直径是半径的2倍,半径是直径的一半。

三、在同圆或等圆里(必不可少的前提),直径都相等、半径都相等。

四、圆心确定圆的位置、半径确定圆的大小。圆规两脚之间的距离是圆的半径。

1、围成圆曲线的长度叫做圆的周长。

2、圆的周长除以直径的商,(周长和直径的比值),叫做圆周率,它是一个固定不变的数,和圆的大小无关。π>3.14。圆的周长大约是直径的3.14倍。

4、长方形的周长=(长+宽)×2=(a+b)×2

5、长度和周长单位有:km m dm cm mm

C半圆=d+πd÷2 C半圆=2r+πr

1、把圆平均分成若干份,可以拼成一个平行四边形或长方形。

S梯形=(上底+下底)×高÷2=(a+b)×h÷2

S圆环=S大圆-S小圆=π(R2-r2)

4、面积和表面积单位有:平方千米公顷平方米平方分米平方厘米

1平方千米=100公顷 1公顷=10000平方米

5、假如长方形的周长=正方形的周长=圆的周长,那么它们当中圆的面积最大。

八、半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍。

1、是、等于、相当于,意思相同。

1.二、求提高了、降低了、增加了、减少了、节约了、多了、少了百分之几,都是用:甲÷乙

2.三、小数、分数和百分数的互化

1.四、解答分数应用题的一般步骤

2.判断单位“1”是已知的还是未知的

3.假设单位“1”已知的,用乘法计算:单位“1”×对应分率

4.假设单位“1”未知的,用除法计算:已知量÷对应分率=单位“1”;另外,也可以用方程。

5、减数=被减数-差除数=被除数÷商

1、速度×时间=路程路程÷速度=时间路程÷时间=速度

2、单价×数量=总价总价÷单价=数量总价÷数量=单价

3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

4、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

图形变换和图案设计时,会用到:轴对称、平移和旋转。

2.平移:关注是上下平移还是左右平移,尤其是平移了多少格

3.旋转:关注是顺时针还是逆时针方向旋转,关注旋转的角度是多少度

a+b+c=a+(b+c) 25+37+63=25+(37+63)

a×b×c=a×c×b 25×9×4=25×4×9

a×b×c=(a×c)×b 128×3×8=(125×8)×3

两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,再把两个级相加。

a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25

a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)

1.两个数相除又叫做这两个数的比。其中,比号前面的数是比的前项,比号后面的数是比的后项,前项÷后项=比值

a÷b=a:b=(b≠0,除数、分母和后项不能为0)

例如:15÷25=():()==()%=()(填小数)=()折=()成

再如:甲数和乙数的比是4:3,甲数是乙数的(/),乙数是甲数的(/),甲数是乙数的()%,乙数是甲数的()%,甲数比乙数多()%,乙数比甲数少()%。

化简比就是把一个比化成最简单的整数比。也就是:前项和后项都是整数,并且前项和后项只能有公因数1。

4.注意:比值是一个数,而化简比结果是一个比。

例如::0.75化成最简单的整数比是(),比值是()。

重点关注:类似已知长方形的周长是28厘米,长和宽的比是4:3,求长方形的长、宽或面积。

6.三角形三个内角度数的比是1:2:3或1:1:2,这个三角形是(直角)三角形。

9.体积单位:立方米立方分米立方厘米

1升=1立方分米 1毫升=1立方厘米

11、大于0的数叫做正数,小于0的数叫做负数。正数和负数可以用来表示具有相反意义的量。0既不是正数也不是负数。

12、正数和负数可以抵消,比如:+5和-5能完全抵消;-8和+3抵消后得-5。

13、统计图有:(复式)条形统计图、(复式)折线统计图、扇形统计图。

14、条形统计图:很容易看出各种数量的多少。

15、折线统计图:不但可以看出数量的多少,而且能够表示数量的增减变化。

16、扇形统计图:能呈现各部分与总数的百分比。

(1)平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。

①直线、射线、线段的特点、联系与区别。

②角的特征、角的分类、角的度量方法。

④三角形的特征,分类(按边分、按角分)。

⑤四边形。每类图形的特征,特殊与一般的关系。

⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。

⑦轴对称图形。(能画出学过的轴对称图形的对称轴)

要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。

②能根据图形特征进行合理的判断、选择。

②掌握每种图形的周长与面积计算公式及推导过程。

①长方体、正方体、圆柱、圆锥的特征。

②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。

③建立这四种立体图形体积计算的联系。

④加强体积与表面积的区别、体积与容积的区别的对比训练。

建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。

如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案——

切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。

(1)平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。

(2)统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。

OK,小编就写到这里了,希望对大家有所帮助。

Tags: 统计 周长

桂ICP备2023009811号